Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda
نویسندگان
چکیده
BACKGROUND Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. MAIN BODY The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. CONCLUSION Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.
منابع مشابه
Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work
Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...
متن کاملA Multi-objective Model for Location of Transfer Stations: Case Study in Waste Management System of Tehran
This paper presents a multi-objective optimization model for the design of a waste management system consisting of customers, transfer stations, landfills and collection vehicles. The developed model aims to simultaneously minimize the total costs, greenhouse gas emissions and the rates of energy consumption. To tackle the multiple objectives in the problem, we utilize an interactive fuzzy prog...
متن کاملIdentification and green grading of jobs in the renewable energy field of the biomass: A grounded theory study
Background and aims: Fossil fuels Emission and their limited resources make to use renewable energy with more sustainable energy sources and less minimal environmental impacts. One of the most appropriate renewable energies considered lots of advantages including being renewable and environmentally friendly and containing social and economical interests, is Biomass. “Biomass” means a power sour...
متن کاملUrban waste management and the environmental impact of organic waste treatment systems in Kampala, Uganda
In Kampala, Uganda, about 28,000 tonnes of waste are collected and delivered to landfill every month. Kampala Capital City Authority records show that this represents approximately 40 % of the waste generated in the city. The remaining uncollected waste is normally burnt and/or dumped in unauthorised sites, causing health and environmental problems. However, the organic fraction of domestic was...
متن کاملMathematical Modelling of Second and Third Generations of Biomass Networks Considering Water-Energy Nexus
Nowadays required energy mostly comes from fossil fuels but the limitation of fossil resources and their environmental effects have encouraged communities to seek alternative renewable energy sources. Meanwhile enery forom biomass (bioenergy) has particular importance due to wide range of resources and other advantages. In this research, a multi-objective model is proposed to design a bioenergy...
متن کامل